Raspberry Pi GPIO

In this Raspberry Pi GPIO tutorial we are going to take a look at all the basics of the GPIO pins or also know as the general purpose input and output pins.

These pins are to communicate with other circuitry such as extension boards, custom circuits and much more. You can make some pretty cool stuff by using these pins. We will look into a lot more projects in the future that make use of these pins.

There a few things that you should know before you start playing around with pins, I cover all of these later on.

Be sure to check out our video on the Raspberry Pi GPIO below. It will take you through all the basics you need to know to get started. If you do like the video then please subscribe to us on YouTube so you stay up to date with all the coolest Raspberry Pi projects, guides and much more.

Warning: Experimenting with the GPIO is risky and has a chance of bricking your Raspberry Pi. Knowing the power limitations of the GPIO pins and also understanding what you’re plugging in is a must.


The equipment I use in this Raspberry Pi GPIO tutorial are listed below.

Raspberry Pi

4GB SD Card (8 GB+ Recommended) or 8 GB Micro SD Card if you’re using a Raspberry Pi 2, 3 or B+

Ethernet Cord or Wifi dongle (Only if you’re controlling remotely)

A Raspberry Pi Case with access to the GPIO pins

1x 100-ohm resistor

1x Red LED

GPIO Breakout Kit Assembled or Un-assembled


Breadboard Wire/Jumper Cables

Raspberry Pi GPIO Tutorial

Now let’s get started on this Raspberry Pi GPIO tutorial, we will be taking a look at the the different types of pins that available, how to enable the modules, what a breakout kit is and finally build a very simple circuit.

If you’re an owner of a Raspberry Pi B+, 2, zero or 3 then you will have 40 pins in total. The earlier models such as the Raspberry Pi B and similar all have 26 pins.

See below for the Raspberry Pi GPIO pinout diagram. We have included all 3 iterations for the pinout diagram. If you want a PDF version of the pinout diagram you can find it for download here.

Raspberry Pi GPIO pinout diagram
As you can see there are more than just your standard pins there are some that reference I2C, SPI and UART.

GPIO are your standard pins that simply be used to turn devices on and off. For example, a LED.

I2C (Inter-Integrated Circuit) pins allow you to connect and talk to hardware modules that support this protocol (I2C Protocol). This will typically take up 2 pins.

SPI (Serial Peripheral Interface Bus) pins can be used to connect and talk to SPI devices. Pretty much the same as I2C but makes use of a different protocol.

UART (Universal asynchronous receiver/transmitter) are the serial pins used to communicate with other devices.

DNC stands for do not connect, this is pretty self-explanatory.

The power pins pull power directly from the Raspberry Pi.

GND are the pins you use to ground your devices. It doesn’t matter which pin you use as they are all connected to the same line.

All this might be daunting at first but really it’s pretty easy once you get going. A lot of the abbreviations and technical jargon is easy turn people off straight away.

Configuring and using the Pins

In this section we will briefly touch on how to setup the pins so you can use them on the Raspberry Pi. We will go lots more into actually programming and using the pins in future Raspberry Pi projects.

In this example and future projects we will be using Raspbian. If you haven’t got it installed, then you can find out how to install the latest version in my Raspbian installation guide.

Configuring GPIO

If you’re on the latest version Raspbian then you can start programming and using the GPIO pins without needing to do any extra configuration. However, it is recommended that you update your Pi to the latest packages anyway. If you haven’t done this, then you can do it by running the following commands:

sudo apt-get update
sudo apt-get upgrade

If you don’t have it installed you simply run the following command:

sudo apt-get install rpi.gpio

Configuring Raspberry Pi I2C

Setting up the I2C pins on the Raspberry Pi is super easy and will only take a couple of minutes to do.

Firstly, go to the Raspi-Config tool by entering the following command:

sudo raspi-config

In here go to advanced options and then to I2c, enable I2c by pressing yes.

The Pi should now alert you that I2C will be enabled after reboot. It will then ask if you want it to be loaded by default. Select yes if you plan on using I2c every time the Raspberry Pi boots up.

Now we want to make sure it has successfully enabled the necessary modules. To do this enter the following command:

lsmod | grep i2c_

This command will return any modules that are running starting with i2c. It should return something like this: i2c_BCM2708.

Configuring Raspberry Pi SPI

Configuring the Raspberry Pi SPI again much like the I2c is super easy and will only take a couple of minutes to do.

Firstly, go to the Raspi-Config tool by entering the following command:

sudo raspi-config

Once the config tool has loaded go to advanced options and then to SPI.

Enable SPI and it will tell you that it will be enabled after reboot.  After that it will ask if you want it to be loaded by default. Only select yes if you plan on using it every time the Pi boots up.

To check that SPI is successfully up and running use the following command:

lsmod | grep spi_

This command will return any modules that are running starting with SPI. It should return something like spi_bcm2835. Make sure you have restarted your Pi before checking to see if the module has been loaded.

Raspberry Pi SPI and I2C

Using a breakout kit

A breakout kit allows you take all the pins via a ribbon cable and connect them to a breadboard or a difference device. This is a lot easier and safer than working in and around the Raspberry Pi.

There are a few different types of breakout kits you’re able to buy for the Raspberry Pi GPIO pins. I personally prefer the T type as they are easy to read and use. If you’re looking for a breakout kit to buy be sure to check out the equipment list above.

When connecting the ribbon cable, you need to make sure it is connected so it is facing away from the board. You can see an example on a correctly setup ribbon cable with a T type breakout board right below.

raspberry pi breakout board

Programming with the Raspberry Pi GPIO Pins

Programming with the GPIO pins on the Raspberry Pi is typically done using the programming language Python. This particular circuit and code is super easy to get going and won’t take you long at all to complete.

If coding sounds like it may be a little too involved for you and would prefer a simple solution then something like Raspberry Pi Cayenne might interest you. The software package allows you to add sensors, control GPIO pins and lots more with a super easy user interface.

If you’re happy to code and learn lots about Python then check out my example below.

Firstly, let’s setup our little circuit, I have a nice easy diagram to follow below. If you have a breakout kit the circuit will obviously be a bit different since your wires will come from cobbler. Alternatively, simply connect the positive end of a LED up to pin 7 and the negative end to a resistor that connects to a ground pin.

Raspberry Pi GPIO simple led circuit

Now let’s create a python file so we can type out our python script.

sudo nano led_blink.py

Now let’s write out little program. It’s really important to remember python is white space sensitive. For example, in the for loop make sure you have 4 spaces for anything within the loop. To explain a little further the GPIO.output(7, true) line will need have four spaces before it.

#import the GPIO and time package
import RPi.GPIO as GPIO
import time
GPIO.setup(7, GPIO.OUT)
# loop through 50 times, on/off for 1 second
for i in range(50):

Now exit and save by pressing ctrl+x and then y.

Now if you run our little script the circuit should come to life. You can run a python script by doing the following command. It is also important that you run it as the superuser using sudo.

sudo python led_blink.py

Raspberry Pi LED Circuit

I hope this tutorial has helped introduce you to the basics of GPIO pins.

As I mentioned earlier in this guide I will be doing a lot of projects that use the Raspberry Pi GPIO pins in the future. This includes using motions sensors, temperature gauges, controlling motors and much more. If you have any questions, feedback or if i missed anything feel free to drop us a comment below!

The Raspberry Pi Crash Course

The Raspberry Pi Crash Course

Enter your email address below to get the

Raspberry Pi crash course delivered straight to your inbox

Please check your inbox for a confirmation email!